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About this tutorial

Information retrieval is not:
• everything collaborative filtering
• download a data, hack a Git repo, and train a deep learning model
• writing SQL scripts, deploying a linear model, and running A/B

testings
• publishing papers bragging about reinforcement learning

It’s all of them!
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Part 1: Pattern Recognition (Model design & Model analysis)

About this tutorial

The contents we present here is more than sufficient for a full-semester
grad course, so we aim to provide readers with:
• the big picture rather than technical details;
• necessary intuitions & heuristics rather than rigorous justifications;
• rooms for improvement rather than how to improve them exactly.

After this tutorial, John Snow still don’t know how to crack most of the
challenges (and neither do we), but he will be motivated to give another
try now that he knows something.

Figure 1: Me at day 1 of my job.
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Part 1: Pattern Recognition (Model design & Model analysis)

IR Pattern Recognition Setting

Pattern recognition generally concerns with learning the patterns from
the observed data, such that they can generalize to the unseen testing
data.
Let I = {e1, . . . , ek} be the set of entities (e.g. queries, ads, items), and
U = {u1, . . . , uq} be the set of users. IR tasks could be entity-to-entity or
entity-to-user.
Please make yourself comfortable imaging your most familiar use case.
Entities or users can possess features Xe ,Xu 2 X , which might be:

1 one-hot encoding such as in the collaborative filtering (CF) setting.
2 numerical vector which is the content-based setting.

When no confusion rises, we use Xu,e to denote the joint features.
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IR Pattern Recognition Setting

Modern machine learning relies heavily on representation learning. Let
� 2 � : X ! Rd be the presentation mapping, such that
�(e) := �(Xe). It could be either:
• pre-trained embedding, which means the mapping is fixed;
• (hidden) representation layer with its own underlying

parameterization.
The feedback Yu,e (or Ye,e) is categorical, and starting here our tutorial
will become significant different from what your ordinary ML textbooks.

Definition (IR Feedback)
The feedback data is implicit-unlabelled if Yu,e 2 {?, 0, 1}, and is
k-scale explicit-unlabelled if Yu,e 2 {?, 0, . . . , k}.
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IR Pattern Recognition Setting

We view pattern recognition in IR as classification with missing data:
• Why classification? Because predicting both implicit (click) and

explicit (rating) can be converted to finding decision boundaries.
• Why missingness? Users do not interact with what is not exposed

(exposure bias), and are more likely to interact with what they
found favorable (selective bias).

The training data are given by the triplets: Dtrn =
�
(u, e,Yu,e)

 
, drawn

(not necessarily independently) from Ptrn. We denote its support by
supp(Ptrn). The same for Dtrn, Ptest, and supp(Ptest).
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IR Pattern Recognition Setting

A moment of truth: we cannot expect Ptrn = Ptest, nor even
supp(Ptest) ⇢ supp(Ptrn) in IR:

1 In regular unbiased evaluation, testing data is drawn from a
hypothetical uniform-exposure domain Punif, who have a much larger
support;

2 For real-world deployment, the testing data of interest is the
deployment domain (Pdeploy) generated by the candidate IR system,
which will have mismatch with Ptrn unless nothing new is
recommended.

Definition (IR pattern recognition)
Pattern recognition in IR aims to learn decision boundaries from Dtrn

(e.g. implicitly-unlabelled) that generalize well to Ptest (e.g. the
deployment domain) with Ptrn 6= Ptest.
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IR Pattern Recognition Setting

We use such as f (✓; u, e), f 2 F to denote the pattern recognition
model. Its decision boundary is given by: F (✓). When coupled with
representation learning, we use the shorthand: f � �(u, e).
In IR, the most prevalent solution for learning patterns from data is
probably empirical risk minimization (ERM):

min
f2F

EP`(f ),where EP`(f ) := E(u,e,Yu,e)⇠P`
�
f (u, e),Yu,e

�
.

An important extension is weighted ERM that aims at:

EPw `(f ) := E(u,e,Yu,e)⇠P`
�
f (u, e),Yu,e

�
· w(u, e),

where Pw is shifted by the weighting function w(·).
Essentially, many hope that the weighting function can handle
Ptrn 6= Ptest. We will show why this may not be a good idea.
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IR Pattern Recognition Setting
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The two cultures of data science

A recurrent theme in AI.
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The two cultures of data science

Achieve the best of both worlds? Use our pyramid of model design:

Take linear model for example: p(Yu,e = 1) = �
�
h✓,Xu,ei

�
:

• Inductive bias: describe linear response surfaces;
• Expressivty: linear combination of features;
• Optimization & Inference (diagnostic): convex optimization,

model examined by linearity, homosedasticity, independence,
normality.

• Generalization: lead to linear interpolation within training domain
and linear extrapolation outside.
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Teaser: shallow embedding with SGNS

Things get complicated very quickly moving beyond linear models :(
Consider perhaps the simplest neural network model in IR that trains
entity embeddings �(e) using the skip-gram negative sampling (SGNS)
algorithm (item2vec):

p(Ye,e0 = 1) = �
�
h�(e), �̃(e0)i

�
, p(Ye,e0 = 0) = �

�
� h�(e), �̃(e0)i

�

`e,e0 = � log p(Ye,e0 = 1) + k · Eẽ⇠Neg(I)
⇥
log p(Ye,ẽ = 0)

⇤
.

The representation mappings are given by the embedding matrices
� =

⇥
�(e1), . . . ,�(e|I|)

⇤
and �̃ =

⇥
�̃(e1), . . . , �̃(e|I|)

⇤
. The empirical

risk is given by R(�, �̃) =
P

e,e0 `e,e0 .
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Teaser: shallow embedding with SGNS

It looks like a simple factorization with a non-linear activation:


Y11 . . .
. . . . . .

�
= �

⇣"�(e1)
...

#
[�̃(e1), . . .]

⌘
, (1)

but h�(·), �̃(·)i is not recovering Y ! Suppose �̃ is given, then:

r�(e1)R(�) = �̃diag(⇤)
n
�
�⇥
Q1,1, . . . ,Q1,|I|

⇤�
� �

�
h�(e1), �̃i

�o

| {z }
non-linear error term, with Qi,j=log

pi,j
pi pj

+c

.

For illustration, if the loss function is given by the least square:
Rls(�) :=

��Y � ��̃
��2

2
, then:

r�(e1)Rls(�) = �̃diag(⇤)
n⇥

Y1,1, . . . ,Y1,|I|
⇤
� h�(e1), �̃i

o

| {z }
linear error term

.
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Teaser: shallow embedding with SGNS

Comparing the error terms, we observe:
• SGNS projects error terms to the gradient non-linearly;
• the actual factorization objective is Qi,j instead of Yi,j .

Recently, Xu et al. 20211 shows that simultaneously optimizing �, �̃
amounts to solving:

min
�,�̃

DKL

⇣
p(Y |�, �̃)kp(Y |Q)

⌘
,

where DKL is the KL divergence. The expression is referred to as
sufficient dimension reduction, as the information of Y |Q is preserved
in the optimal sense. Therefore, we reach the conclusion:

1 SGNS tries to express Qi,j = log pi,j
pi pj

: the discounted co-occurence
probability;

2 during optimization, �(e) converges to the sufficient dimension
reduction of

⇥
Qe,1, . . . ,Qe,|I|

⇤
.

1Theoretical Understanding of Product Embedding for Ecom ML, WSDM’21
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General methodology for analyzing expressivity

Investigating the expressivity of discriminative models is difficult because:

1 the initializations are often random;
2 the parameters are changing during the GD optimization;
3 models are heavily over-parameterized. (why is this challenging?)

Increasing model size d as the number of samples grow n invalidates
classical statistical efficiency analysis.

Example (Linear discriminative analysis in high dimension)
Suppose a random vector X 2 Rd is drawn from one of two Gaussian
distributions P1 and P2 with mean µ1, µ2 and identity covariances. A
natural decision rule  is: log P1(X )

P2(X ) .
The decision rule reduces to the error function: Err( ) = �(��/2),
where � = kµ1 � µ2k2, and � is the CDF of standard Gaussian.
However, µ1, µ2 may need to be estimated from data and thus the
decision rule  ̂. Using the estimated version, the error function becomes:
Err( ̂) = �

⇣
�

2

p
�2+2d/n

⌘
!
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General methodology for analyzing expressivity

In general, we wish to find a quantity that is invariant to GD
optimization, and at the same time independent of the d/n ratio.
Note that by first-order Tyler expansion, it holds:

f
�
✓; u, e

�
= f

�
✓(0); u, e

�
+
⌦
✓ � ✓(0),rf

�
✓(0); u, e

�↵
+O(

p
1/d).

Remark: we can always get rid of the intercept term by reparameterizing
f (✓; ·) = g(✓1; ·)� g(✓2; ·).
Since ✓(0) is constant after initialization, we have:

f
�
✓; u, e

� d!1
⇡

⌦
✓,rf

�
✓(0); u, e

�↵
+ C ,

which resembles the kernel regression, e.g.

f
�
✓; u, e

�
= h✓,�(u, e)

↵
,

where � is the feature lift of the RKHS induced by the kernel:
K
�
u, e; u0, e0

�
= h�(u, e),�(u0, e0)i.
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General methodology for analyzing expressivity

Observe that the gradient of rf
�
✓(0); u, e

�
exactly plays the role of

feature lift!

Definition (Neural tangent kernel)
KNTK

�
u, e; u0, e0

�
:=

⌦
rf

�
✓(0); u, e

�
,rf

�
✓(0); u0, e0

�↵
.

Note that KNTK depends only on the initialization and model structure.
It is not affected by the GD optimization or d/n ratio.
Hence, during GD optimization, the response surface F (✓) converges to
that of the kernelized predictor:

argmin
f

kf kKNTK s.t. yu,e f (u, e) � 1, 8(u, e) 2 Dtrn.

Here, we use the dual formulation of kernelized predictors.
It means we only need to analyze KNTK to investigate and compare the
expressvity of over-parameterized models :)
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General methodology to study GD optimization

Neural tangent kernel provides a versatile tool to study the limiting
expressivity (as d ! 1).
However, what is the optimization path during a regular session of GD:
✓(t) = ✓(t�1)

� ⌘f (✓(t�1))?
We mentioned earlier that GD is model agnostic, but GD also carries an
implicit (data-dependent) bias! Suppose the loss function has
exponential-tail behavior. Then the gradient is:

1
n

X

(u,e)2Dtrn

�yu,e exp
⇣
� yu,e f (✓; u, e)

⌘
rf (✓; u, e).

As gradient descent proceeds, rf will decrease. If kf (✓; ·)k2 increases at
the same time, the gradient is then dominated by the term:

min
(u,e)2Dtrn

yu,e f (✓; u, e),

which is exactly the worst margin!
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General methodology to study GD optimization

Therefore, GD will focus on optimizing the worst margin, making the
optimization path behave that of the hard-margin SVM (if we assume
Dtrn can be separated by the over-parameterized f (✓; ·)):

max
k✓k21

min
(u,e)2Dtrn

yu,e f (✓; u, e).

Formally, three mild conditions will guarantee the convergence of the
optimization path:
• the loss function has exponential-tail behavior;
• f (✓; ·) behaves like a homogeneous function:

f (✓; ·) = k✓k2f
�
✓/k✓k2; ·

�
;

• the model is over-parameterized so it is capable of separating the
data.

What is left is simply to analyze the KKT point (since the problem may
not be convex) of the hard-margin SVM problem according to the
properties of f .
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Part 1: Pattern Recognition (Model design & Model analysis)

General methodology to study generalization

In IR, there are three types of generalizations:
• transductive: training and testing data are sampled without

replacement, think about the movie rating completion problem – the
same (u, e) pair will not appear twice;

• inductive: training and testing data are i.i.d samples from the same
distribution, think about the item-item recommendation problem –
the same (e, e) pair may appear many times;

• cross domain: training and testing data are i.i.d samples from
different distributions.

The two key notions for investigating generalization are: structural

complexity and domain discrepancy.
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General methodology to study generalization

Heuristically, structural complexity measures how well the predictor can
fit random signals.
Let �u,e be Rademacher (or Gaussian) random variables. Rademacher
random variables take the values of {�1,+1} with equal probability. If
the task is transductive, then �u,e is also obtained by sampling without
replacement.

Definition (Empirical Rademacher complexity)
Rn(F) = supf

��� 1n
P

(u,e)2D �u,e f (u, e)
���

• There are many contraction and norm-bound properties that allow
us to derive the upper bound of Rn(F) using the structures of F ;

• for instance, if F consists of factorization models, then we can
consult results from random-matrix theory.

• if F consists of recursively-defined model, e.g.
�(W (q)�(. . .W (1)X )), then we can use the peeling technique that
greatly simplifies the problem.
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General methodology to study generalization

Domain discrepancy is often characterized by either:
• integral probability metric (IPM):

DF (PkQ) = supf2F

���
R
fdP �

R
fdQ

��� (Wasserstein distance,
Maximum Mean Discrepancy),

• f-divergence: Df (PkQ) =
R
f
⇣

dP
dQ

⌘
dQ (KL-divergence)

While f-divergence directly uses likelihood ratio, it requires
supp(Q) ⇢ supp(P) that may not be satisfied in IR. IPM may better
leverage the geometry of the data (we will revisit IPM later).
The generalization error bound usually has the formulation of:

EPtest`(f )  ÊPtrn`(f ) + func
�
D(PtestkPtrn),Rn(F)

�
+ slack,

where Ê represents the empirical average, D(·k·) is some discrepency
term depending on the problem, and func(·) is a simple function.
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Domain topic: MCF v.s. NCF

Ready to rock and roll? Let’s see how our pyramid of model design and
analysis lead to the cutting edge research.
To resolve the ongoing debate of matrix collaborative filtering (MCF) and
neural collaborative filtering (NCF), we start from the NTK analysis. Xu
et al.2 shows that:

lim
t!1

lim
d!1

F
⇣ ✓

k✓k2

⌘
stationary point

!

n
argmin

f
kf kKCF s.t. yu,e f (u, e) � 1

o
,

with KCF (u, e; u0, e0) = a1[u = u0] + b1[e, e0] + c . How does KCF reflects
the CF principle?
Here, the constants a, b, c are determined by the model structure and
initialization. They essentially decide the relative weights and global
intercept of CF.

2Revisiting NCF v.s. MCF: the theoretical perspectives. ICML’21
Author: Da Xu, Chuanwei Ruan Contact: {daxu5180,ruanchuanwei}@gmail.com
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Part 1: Pattern Recognition (Model design & Model analysis)

Domain topic: MCF v.s. NCF

Under GD optimization, Xu et al. also shows that:

lim
t!1

✓(t)

k✓k2

stationary point
!

⇢
min k✓k2 s.t. yu,e f (u, e) � 1, (for NCF)
min k✓knuc s.t. yu,e f (u, e) � 1, (for MCF)

The key take away is that the solutions have different geometries induced
by the norm constraints. We denote the layer-wise `2 norm of the
resulting q-layer NCF as {�i}

q
i=1

, and the nuclear norm of the result MCF
as �nuc.
The difference in solution geometry leads to the different generalization
behaviors. For transductive generalization:

EPtest`(f )  ÊPtrn`(f )+slack+

8
<

:
O

⇣
p
q
Qq

i=1
�i/

p
n
⌘
(for NCF)

O

⇣p
log |U|

p
|I| · �nuc/n

⌘
(for MCF)

MCF has better rate at transductive tasks! Intuitive explaination? We
save inductive task for later.
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Domain topic: importance weighting for IR

Reweighting is critical for many IR applications: correcting bias, fairness,
etc. But handling missing data? Not so quick...
In most cases, people consider w(u, e) = Ptest(u,e)

Ptrn(u,e)
to correct for the

domain shift. Our analysis will help answer three questions:
1 how does it affect optimization?
2 how does it affect generalization?
3 why it may not handle missing data?

It is shown in Xu et al.3 that If D is separable by f (✓; ·), then
reweighting only affects the convergence speed to ✓⇤ – which is the KKT
point of the hard-margin SVM as discussed before:

���
✓(t)(w)

k✓(t)(w)k2

� ✓⇤
��� . log n + DKL(p⇤kw)

log t
,

where p⇤ is the dual optimum of the hard-margin SVM.

3Rethinking the role of importance weighting for deep learning. ICLR’21
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Domain topic: importance weighting for IR

If D is not separable, we can decompose it into Dsep

S
Dnon-sep. Let ⇧ be

the orthogonal projection, then: ✓(t)(w) = ⇧sep✓(t)(w) + ⇧non-sep✓(t)(w).
The story is the same on the separable part.
On the non-separable part, we have ✓̃(w) = argminRnon-sep(✓;w), which
is uniquely defined by the weights, and that:

���⇧non-sep✓
(t)(w)� ✓̃(w)

��� . O(1) + log2 t

t
.

Therefore, reweighting only shifts the decision boundary on the
non-separable subspace, e.g. by inducing different intercepts.
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Domain topic: importance weighting for IR

For generalizing to a different but overlapped domain, we apply
reweighting to the previous NCF vs. MCF example. The cross-domain
generalization bounds are:

EQ`(f )  ÊPw `(f )+slack+

8
<

:
O

⇣
D1(PkQ) ·

p
q
Qq

i=1
�i/

p
n
⌘
(NCF)

O

⇣
D2(PkQ) ·

p
(|U|+ |I|) log n�nuc/n

⌘
(MCF)

For inductive tasks, NCF has a better rate, and the domain difference
plays a multiplicative factor on the model complexity terms! Intuitive
explanations?
In general, reweighting can achieve domain generalization at the cost of
sample efficiency. But we have assumed support overlap, which is not
practical. What if we need to generalize to unseen domain?
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Domain topic: generalizing to unseen domain

Again, according to the preivous NTK analysis, over-parameterized NN
behave like linear predictors outside training domain. In particular, Xu
et al.4 shows for two-layer MLP that outside the training domain, for any
direction v , there exists a linear model coeficient �v such that:

lim
t!1

���
f
�
✓(t);Xu,e + �v

�
� f

�
✓(t);Xu,e

�

�
� �v

��� < O(
1
t
).

Hence, for reparameterized models, reweighting at most changes the
slope outside the training domain, but not the nature of the linear
extrapolation!

4How Neural Networks Extrapolate, ICLR’21
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Domain topic: generalizing to unseen domain

For IR pattern recognition, the linear extrapolation means the hardness of
learning under insufficient support overlap.
In particular, Xu et al.5 show from a PAC-Bayes learning perspective
that even with reweighting, the generalization errors express as:

test err  trn err + slack + complexity + D(PkQ) + EQ/P,f⇠⌧R(f ),

where D(PkQ) is the discrepancy on the overlapped region, EQ/P,f⇠⌧ is
taken on the non-overlapped region and ⌧ is any post-training
distribution on the model space.
The result suggests we can at most expect an average out-of-domain
performance from any modelling and reweighting efforts. A recent line of
research tries to use representation learning to achieve domain
generalization, which we will discuss next.
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Part 1: Pattern Recognition (Model design & Model analysis)

Domain generalization

Possible sources: covariate shift, target shift, concept change, selection
bias, etc.

Seminal results for generalizing across domain:

test err  trn err + slack + disc(P ,Q) + inf
f2F

�
RP(f ) + RQ(f )

 
.

Earlier work uses the H�H terminology to characterize the discrepancy
term disc(P ,Q). Recent work extends it to using IPM such as the
Wasserstein’s distance DW (PkQ).
However, the optimal joint risk term inf f2F

�
RP(f ) + RQ(f )

 
eventually

decides if cross-domain generalization is truly feasible.
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Part 1: Pattern Recognition (Model design & Model analysis)

Domain generalization

The most common practice of using representation learning to achieve
domain generalization is to find an "invariant" representation mapping �
such that the domain discrepancy on the representation-induced domains
P(�) and Q(�) are small.
The following objective is commonly used:

min
f ,�

EP`(f � �) + DW (P(�)kQ(�)),

where the hope is that � achieves both good training performance while
minimizing domain discrepancy.
However, it is often ignored that the presumption for this to work is that
the optimal joint risk inf f2F

�
RP(f ) + RQ(f )

 
can be made small. This

is not always the case especially for IR. In particular, Xu et al.6 shows for
item2vec (which we discussed earlier) that:

inf
�

⇥
EP`(�) + EQ`(�)

⇤
&

X

(u,e)2D

DKL(Yu,e(P)kYu,e(Q)),
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Part 1: Pattern Recognition (Model design & Model analysis)

Domain generalization

• The previous slide suggests that if P and Q are not well-aligned in
terms of the co-occurrence statistics Yu,e , then domain
generalization is hard!

• Does the intuition from item2vec hold for general representation
learning in IR? Comparing IR with CV or NLP, there often lacks a
rich enough feature space from which meaningful joint
representations can be constructed.

• If perfect cross-domain generalization in IR cannot be achieved
anyway, is it possible to find some instruments that help us improve
the performance?
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